Search here to find large public and licensed datasets
Trophoblast stem (TS) cells derived from the trophectoderm (TE) of mammalian embryos have the ability to self-renew indefinitely or differentiate into fetal lineages of the placenta. Epigenetic control of gene expression plays an instrumental role in dictating the fate of TS cell self-renewal and differentiation. However, the roles of histone demethylases and activating histone modifications such as methylation of histone 3 lysine 4 (H3K4me3/me2) in regulating TS cell expression programs, and in priming the epigenetic landscape for trophoblast differentiation, are largely unknown. This study demonstrates that the H3K4 demethylase, KDM5B, regulates the H3K4 methylome and expression landscapes of TS cells. Depletion of KDM5B resulted in downregulation of TS cell self-renewal genes and upregulation of trophoblast-lineage genes, which was accompanied by altered H3K4 methylation. Moreover, it is found that KDM5B resets the H3K4 methylation landscape during differentiation in the absence of the external self-renewal signal, FGF4, by removing H3K4 methylation from promoters of self-renewal genes, and of genes whose expression is enriched in TS cells. Altogether, these data indicate an epigenetic role for KDM5B in regulating H3K4 methylation in TS cells and during trophoblast differentiation.
Positioning of nucleosomes along DNA is an integral regulator of chromatin accessibility and gene expression in diverse cell types. However, the precise nature of how histone demethylases including the histone 3 lysine 4 (H3K4) demethylase, KDM5B, impacts nucleosome positioning around transcriptional start sites (TSS) of active genes is poorly understood. Therefore, to clarify the role for KDM5B in regulating nucleosome organization in ES cells, this study evaluated genome-wide changes in nucleosome positioning in KDM5B-depleted and control ES cells using micrococcal nuclease sequencing (MNase-Seq). These findings demonstrate that depletion of KDM5B leads to altered enrichment of nucleosomes around TSS regions and accessible chromatin regions (DNase I hypersensitive sites).