Search here to find large public and licensed datasets

Data from "KDM5B decommissions the H3K4 methylation landscape of self-renewal genes during trophoblast stem cell differentiation"
WSU Dataset

UID: 106

Description
Trophoblast stem (TS) cells derived from the trophectoderm (TE) of mammalian embryos have the ability to self-renew indefinitely or differentiate into fetal lineages of the placenta. Epigenetic control of gene expression plays an instrumental role in dictating the fate of TS cell self-renewal and differentiation. However, the roles of histone demethylases and activating histone modifications such as methylation of histone 3 lysine 4 (H3K4me3/me2) in regulating TS cell expression programs, and in priming the epigenetic landscape for trophoblast differentiation, are largely unknown. This study demonstrates that the H3K4 demethylase, KDM5B, regulates the H3K4 methylome and expression landscapes of TS cells. Depletion of KDM5B resulted in downregulation of TS cell self-renewal genes and upregulation of trophoblast-lineage genes, which was accompanied by altered H3K4 methylation. Moreover, it is found that KDM5B resets the H3K4 methylation landscape during differentiation in the absence of the external self-renewal signal, FGF4, by removing H3K4 methylation from promoters of self-renewal genes, and of genes whose expression is enriched in TS cells. Altogether, these data indicate an epigenetic role for KDM5B in regulating H3K4 methylation in TS cells and during trophoblast differentiation.
Subject Domain
Keywords
Access Restrictions
Free to all
Access Instructions
Data can be accessed by clicking the above link.
Associated Publications
Equipment Used
Illumina HiSeq 2000
Dataset Format(s)
TAR
Dataset Size
1.0 GB
Grant Support
1K22HL126842-01A1/National Heart, Lung, and Blood Institute (NHLBI)